Tetrahedron Letters No.9, pp. 853-855, 1967. Pergamon Press Ltd. Printed in Great Britain.

CONSTITUTION OF SELINONE,

A NEW FLAVANONE FROM SELINUM VAGINATUM CLARKE

T. R. Seshadri and M. S. Sood

Department of Chemistry, University of Delhi, Delhi.7, India (Received 23 December 1966)

In earlier papers the distinction between the roots of <u>Selinum vaginatum</u> and <u>Nardostachys jatamansi</u> was clearly brought out1 and a detailed study made of the coumarins present in petroleum ether extract of the roots of <u>S</u>. <u>vaginatum</u>². Further extraction of the residue with benzene yielded a large amount of extract which could be separated into alkali soluble and insoluble portions. The former when subjected to column chromatography yielded angelicin and a new flavanone derivative which has been named '<u>Selinone</u>'. The neutral fraction yielded the same coumarins as earlier found in the petroleum ether extract.

Selinone is a colourless crystalline solid, m.p.151-52; $\left[\alpha\right]_{D}^{29} = -50^{\circ}(C, 0.610 \text{ in methanol})$ and its elemental analysis agrees with the molecular formula $C_{20}H_{20}O_5$. Its colour reactions and solubility properties are characteristic of flavanones having free hydroxyl in the 5 and 7 positions. Its UV spectrum shows maxima at 290 and 328 mµ with bathochromic shifts with Na-acetate and AlCl₃ as expected for a 5,7-dihydroxyflavanone derivative. On refluxing with

853

dimethyl sulphate and potassium carbonate in acetone medium (1 hr) it gives a mono methyl ether m.p. $89-90^{\circ}$, molecular formula $C_{21}H_{22}O_5$; UV maxima at 288 and 335 mµ. The positive ferric reaction and bathochromic shift with AlCl₃ indicate the presence of free hydroxyl group at 5 position, while the absence of shift with NaOAc shows that 7-hydroxyl has undergone methylation.

The NMR spectrum of 7-methyl selinone contains the following signals; a singlet at τ 3.85 (2H) due to protons in positions at 6 and 8 as expected for a 5,7-dihydroxyflavanone derivative^{3,4} a pair of doublets at τ 2.55 and τ 3.0 (J = 9 cps; 2H each) assigned to A_2B_2 system of the 4'-substituted B ring of the flavanone, a triplet at τ 7.05 (2H) characteristic of methylene protons at the 3 position, a singlet at τ 6.05 (3H) attributable to the methoxyl group; the signals at τ 8.2 (doublet; J = 2 cps; 6H), τ 5.45 (doublet; J = 7 cps; 2H) can be assigned to two methyls and a methylene of the system -OCH₂-CH=C(CH₃); a multiplet centred at τ 4.55 (2H) due to a olefinic proton of dimethyl allyl residue and a benzylic proton at the 2 position of the flavanone.

The colour reactions, analytical and spectral data indicate that selinone is $4^{1}-\gamma$, γ -dimethylallylnaringenin (I). The following reactions provide confirmation: (i) Selinone and its 7-methylether, when refluxed (1 hr) with BtOH + Conc. HCl (1:1) lost the C₅ unit and yielded naringenin (II) and sakuranetin (III) respectively,

854

identified by m.p. (m.m.p., undepressed), UV and TLC comparisons with authentic samples. (ii) When sakuranetin was refluxed with Y,Y-dimethylallylbromide (1 hr) in acetone-potassium carbonate, it yielded 4'-Y,Y-dimethylallyl sakuranetin which was found to be identical with selinone-7-methyl ether in m.p. (m.m.p. undepressed), UV and TLC behaviour. The co-occurrence of coumarins and flavanone in this plant is of biogenetic interest; the same C₉ unit seems to be involved in both the types.

REFERENCES

- 1. T.R. Seshadri and M.S. Sood, Phytochemistry (in press).
- 2. T.R. Seshadri, M.S. Sood, K.L. Handa and Vishwapaul, <u>Tetrahedron Letters</u> 3367 (1964); ibid., <u>Tetrahedron</u> (in press).
- T.J. Batterham and R.J. Highet, <u>Aust. J. Chem.</u> 17, 428 (1964).
- L.M. Jackman, <u>Progress in the Chemistry of Organic</u> <u>Natural Products</u> Vol. XXIII, p. 349. <u>Springer Verlag</u> (1965).